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Abstract—Leachate from a landfill has the potential to pollute
groundwater. Mathematical models are often used to describe
groundwater circulation, which can help planners choose suit-
able places for a landfill. The construction of landfills may have
an influence on the groundwater supplies of adjacent settle-
ments. As a result, impact assessments must be completed prior
to the start of the project. This study used three mathematical
models to simulate groundwater contamination concentrations
with variable flow velocities. The first model is a groundwater
flow model that estimates the hydraulic head of groundwater
flow. The second model is used to calculate the groundwater
flow velocity. The third model is a dispersion model, in which
the governing factor is the two-dimensional dispersion equation,
which yields the groundwater pollution concentration. In the
simulation phase, we use the finite difference method for all
models. This investigation considers the effects of industrial
water usage, such as pumping water up to the surface, on
groundwater flow. This research focuses on the effects of
pumping water to adjacent settlements on groundwater flow
and the quality of the water produced. Construction of a landfill
should always be done in an area with a low hydraulic head.
Pumping wells near landfills may also assist to reduce pollution
in household groundwater. As a result, the calculated water
quality in the faraway area was improved while groundwater
volume and flow velocity were preserved.

Index Terms—hydraulic head, groundwater flow model, dis-
persion model, groundwater pollutant concentration

I. INTRODUCTION

THE comparison each waste disposal methods, landfill
is the simplest and cheapest way to deal with waste. It

has been a popular method all over the world for hundreds
of years. It was wrongly believed that there would be no
problem with landfills due to the leakage of garbage juice
from landfill sites into groundwater. Compacted soil was
thought to be a great natural filter. A study discovered that
landfill leakage had an effect on groundwater quality. To
reduce the impact of leakage, landfill waste was separated
into general solid waste and hazardous waste. Although a
protection is placed under a landfill to protect the leakage to
soil, there is still leakage occurring.

The finite difference [1, 2, 3] and finite element methods
[4, 5, 6] are the most popular numerical solution techniques
for groundwater flow models. A useful spreadsheet for two
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and three dimensional steady-state and transient groundwater
numerical simulation in proposed in [7, 8]. The mathematical
model [9] is used to simulate soil salinity in the area near
marine shrimp aquaculture farm by using the electrical con-
ductivity, an indicator of soil salinity assessment. A couple
mathematical models of groundwater flow [10] are used to
simulate the soil salinity in the area near marine shrimp
aquaculture farm. The alternating direction methods are used
to approximate the hydraulic head level of groundwater
flow model [11]. In [12], the mathematical simulation of
groundwater management in drought area is used to optimal
management of the water injection stations to achieve min-
imum cost. A two-dimensional mathematical model [13] is
proposed to investigate groundwater pollutant concentration
around a land fill for long-term. In [14], a one-dimensional
transient advection-diffusion equation is used to describe
groundwater pollutant concentration measurement and to
appoximate these equation by using the standard fourth-
order finite difference methods with Saulyev Scheme and a
modified fourth-order finite difference methods with Saulyev
Scheme. The new fourth-order finite difference technique
with Saulyev method [15] is used to approximate ground-
water pollutant concentration in an area around a landfill.
The numerical simulations of one-dimensional groundwater
pollution measurement around landfills models through het-
erogeneous soil is represented by [16]. The mathematical
models [17] is used to explain groundwater contamination
with chloride and their substance. The two-level explicit
method, the lax-wendroff method and the traditional upwind
method [18] are used to approximate a better solution of
groundwater quality assessment model.

In this research, three mathematical models are applied to
simulate the groundwater pollution concentration with varied
flow velocity. The first is the groundwater flow model, which
provides the hydraulic head. The second is the flow velocity
model, in which the hydraulic head is transformed into the
velocity field of groundwater flow. The third is a dispersion
model, in which the two-dimensional dispersion equation,
which yields the groundwater pollutant concentration, is
a regularly employed controlling factor. For three models,
we apply the finite difference techniques in the simulation
procedure. Finally, we offer a numerical simulation that
validates the technique’s results.

II. MATHEMATICAL MODEL

A. Groundwater Flow Model

We consider the governing equation of vertically integrated
Darcy’s flow in a two-dimensional confined, compressible,
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isotropic, heterogeneous aquifer is [8],

S
∂H

∂t
=

∂

∂x

(
K

∂H

∂x

)
+

∂

∂y

(
K

∂H

∂y

)
±W, (1)

where H(x, y, t) is hydraulic head (metre), K(x, y) is hy-
draulic conductivity (metre/day), W (x, y) is sinks and/or
source (1/day) and S is matrix of specific storage (1/metre).
In this research, we assume the hydraulic conductivity is
constant. It is obtain that

S
∂h

∂t
= K

(
∂2H

∂x2
+

∂2H

∂y2

)
±W. (2)

The boundary conditions are specified for all (x, y) ∈
[0, L]× [0,M ] where L and M are positive constants which
represent the dimension of the rectangular domain, the initial
conditions for t = 0 are specified,

H (x, y, 0) = HZ (y) (3)

at x = 0 and 0 ≤ y ≤ M,

H (x, y, 0) = H0 (x, y) (4)

at 0 < x ≤ L and 0 ≤ y ≤ M.
The boundary condition for t > 0 are specified,

∂H

∂n
= HN (5)

at 0 ≤ x ≤ L and y = M,

∂H

∂n
= HS (6)

at 0 ≤ x ≤ L and y = 0,

H (x, y, t) = HZ (y) (7)

at x = 0 and 0 ≤ y ≤ M,

∂H

∂n
= HE (8)

at x = L and 0 ≤ y ≤ M, where HN , HS and HE are
known constants, HZ and H0 are known functions.

And the source terms W (x, y) that represented by the rate
of pumping well in each point,

W (xs, ys) = Q (xs, ys) = Qs, (9)

for all s = 1, 2, 3, · · · , p, where s is number of pumping
wells.

B. Flow Velocity Model

Darcy’s law is an equation that describes a fluid’s capacity
to flow through a porous medium like rock. It is based on
the idea that the quantity of flow between two places is
directly proportional to the difference in pressure between
the points and the media’s capacity to obstruct the flow.
Here pressure refers to the excess of local pressure over
the normal hydrostatic fluid pressure which, due to gravity,
increases with depth like in a standing column of water.
Permeability is the term for the flow impedance factor.
Darcy’s law is a straightforward proportional connection
between the instantaneous discharge rate through a porous
medium and the pressure decrease over a certain distance. In

modern format, using a particular sign convention, Darcy’s
law is usually written as

q = −K
∂H

∂L
, (10)

where q is the velocity in L-direction, K(x, y) is hydraulic
conductivity (metre/day) and is hydraulic head (metre). This
research rewrite equation (10) by

U = −K
∂H

∂x
, (11)

V = −K
∂H

∂y
, (12)

where U(x, y, t) is the velocity in x-direction and V (x, y, t)
is velocity in y-direction.

C. Dispersion Model

Mass conservation of conservative solutes transported
through media is described by a partial differential equation
known as advection-dispersion. Measurement solute con-
centration around waste landfill, we consider the govern-
ing equation of the dynamic two-dimensional advection-
dispersion equations as follow,

∂C

∂t
= Dx

∂2C

∂x2
+Dy

∂2C

∂y2
− U

∂C

∂x
− V

∂C

∂y
, (13)

where C(x, y, t) is pollution concentration of groundwater,
U(x, y, t) is the velocity in x-direction and V (x, y, t) is
velocity in y-direction, Dx and Dy are diffusion coefficients
of diffusion terms in the both directions on dispersion
equation. The The boundary conditions are specified for all
(x, y) ∈ [0, L]×[0,M ] where L and M are positive constants
which represent the dimension of the rectangular domain, the
initial conditions for t = 0 are specified,

C (x, y, 0) = CZ (y) (14)

at x = 0 and 0 ≤ y ≤ M,

C (x, y, 0) = C0 (x, y) (15)

at 0 < x ≤ L and 0 ≤ y ≤ M.

The boundary condition for t > 0 are specified,

∂C

∂n
= CN (16)

at 0 ≤ x ≤ L and y = M,

∂C

∂n
= CS (17)

at 0 ≤ x ≤ L and y = 0,

C (x, y, t) = CZ (y) (18)

at x = 0 and 0 ≤ y ≤ M,

∂C

∂n
= CE (19)

at x = L and 0 ≤ y ≤ M, where CN , CS and CE are
known constants, CZ and C0 are known functions.
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III. NUMERICAL TECHNIQUES

A. Finite Difference Method for the Groundwater Flow
Model

We will propose the forward time central space method
(FTCS) to the transient groundwater model. We discretize
equation (2) by dividing the interval [0, L] in x-direction into
I subintervals such that I∆x = L, the interval [0,M ] in y-
direction into J subintervals such that J∆y = M and the
interval [0, T ] in time into N subintervals such that N∆t =
T . We can then approximate H(x, y, t) by Hn

i,j , value of the
difference approximation of H(x, y, t) at point x = i∆x,
y = j∆y and x = n∆t where 0 ≤ i ≤ I , 0 ≤ j ≤ J and
0 ≤ n ≤ N which i, j and n are positive integers.

Taking the central difference scheme in space and forward
difference scheme in time into each terms of equation (2),
then

∂2H

∂x2
≈

Hn
i−1,j − 2Hn

i,j +Hn
i+1,j

(∆x)
2 , (20)

∂2H

∂y2
≈

Hn
i,j−1 − 2Hn

i,j +Hn
i,j+1

(∆y)
2 , (21)

∂H

∂t
≈

Hn+1
i,j −Hn

i,j

∆t
, (22)

Wn
i,j = ±

Qn
i,j

∆x∆yHn
i,j

. (23)

Substituting equation (20)-(23) into equation (2), for
1 < i < I − 1 and 1 < j < J − 1 at t > 0,

Hn+1
i,j = Hn

i,j + ξ
(
Hn

i+1,j − 2Hn
i,j +Hn

i−1,j

)
+η

(
Hn

i,j+1 − 2Hn
i,j +Hn

i,j−1

)
+ ω

(
Qn

i,j

∆x∆yHn
i,j

)
,

(24)

where ξ = (∆t)K

(∆x)2S
, η = (∆t)K

(∆y)2S
and ω = ∆t

S .

For i = 1 and j = 1 at t > 0, substituting the known
values on west boundary by Hn

0,1 = H1 and substituting the
unknown value on the south boundary by forward difference
approximation Hn

1,0 = Hn
1,1 − (∆y)HS ,

Hn+1
1,1 = Hn

1,1 + ξ
(
Hn

2,1 − 2Hn
1,1 +H1

)
+η

(
Hn

1,2 −Hn
1,1 − (∆y)HS

)
+ ω

(
Qn

1,1

∆x∆yHn
1,1

)
.

(25)

For 1 < i < I − 1 and j = 1 at t > 0, substituting
the unknown value on the south boundary by the forward
difference approximation Hn

i,0 = Hn
i,1 − (∆y)HS ,

Hn+1
i,j = Hn

i,1 + ξ
(
Hn

i+1,1 − 2Hn
i,1 +Hn

i−1,1

)
+η

(
Hn

i,2 −Hn
i,1 − (∆y)HS

)
+ ω

(
Qn

i,1

∆x∆yHn
i,1

)
.

(26)

For i = I − 1 and j = 4 at t > 0, substituting the
unknown value on the east boundary by backward difference
approximation Hn

I,1 = Hn
I−1,1 + (∆x)HE and substituting

the unknown value on the south boundary by forward differ-
ence approximation Hn

I−1,0 = Hn
I−1,1 − (∆y)HS ,

Hn+1
I−1,1 = Hn

I−1,1

+ξ
(
(∆x)HE −Hn

I−1,1 +Hn
I−2,1

)
+η

(
Hn

I−1,2 −Hn
I−1,1 − (∆y)HS

)
+ω

(
Qn

I−1,1

∆x∆yHn
I−1,1

)
.

(27)

For i = 1 and 1 < j < J − 1 at t > 0, substituting the
known value on the west boundary by Hn

0,j = H1,

Hn+1
1,j = Hn

1,j + ξ
(
Hn

2,j − 2Hn
1,j +H1

)
+η

(
Hn

1,j+1 − 2Hn
1,j +Hn

1,j−1

)
+ ω

(
Qn

1,j

∆x∆yHn
1,j

)
.

(28)

For i = I−1 and 1 < j < J −1 at t > 0, substituting the
unknown value on the east boundary by backward difference
approximation Hn

I,j = Hn
I−1,j + (∆x)HE ,

Hn+1
I−1,j = Hn

I−1,j

+ξ
(
(∆x)HE −Hn

I−1,j +Hn
I−2,j

)
+η

(
Hn

I−1,j+1 − 2Hn
I−1,j +Hn

I−1,j−1

)
.

+ω
(

Qn
I−1,j

∆x∆yHn
I−1,j

)
.

(29)

For i = 1 and j = J − 1 at t > 0, substituting the known
value on the west boundary by Hn

0,J−1 = H1 and substituting
the unknown value on the north boundary by backward
difference approximation Hn

1,J = Hn
1,J−1 + (∆y)HN ,

Hn+1
1,J−1 = Hn

1,J−1

+ξ
(
Hn

2,J−1 − 2Hn
1,J−1 +H1

)
+η

(
(∆y)HN −Hn

1,J−1 +Hn
1,J−2

)
+ω

(
Qn

1,J−1

∆x∆yHn
1,J−1

)
.

(30)

For < i < I − 1 and j = J − 1 at t > 0, substituting
the unknown value on the north boundary by backward
difference approximation Hn

i,J = Hn
i,J−1 + (∆y)HN ,

Hn+1
i,J−1 = Hn

i,J−1

+ξ
(
Hn

i+1,J−1 − 2Hn
i,J−1 +Hn

i−1,J−1

)
+η

(
(∆y)HN −Hn

i,J−1 +Hn
i,J−2

)
+ω

(
Qn

i,J−1

∆x∆yHn
i,J−1

)
.

(31)

For i = I − 1 and j = J − 1 at t > 0, substituting the
unknown value on the east boundary by backward difference
approximation Hn

I,J−1 = Hn
I−1,J−1 + (∆x)HE and substi-

tuting the unknown value on the north boundary by backward
difference approximation Hn

I−1,J = Hn
I−1,J−1 + (∆y)HN ,

Hn+1
I−1,J−1 = Hn

I−1,J−1

+ξ
(
(∆x)HE −Hn

I−1,J−1 +Hn
I−2,J−1

)
+η

(
(∆y)HN −Hn

I−1,J−1 +Hn
I−1,J−2

)
+ω

(
Qn

I−1,J−1

∆x∆yHn
I−1,J−1

)
.

(32)

B. Finite Difference Method for the Flow Velocity Model

We will propose the forward time central space method
(FTCS) to the transient groundwater model. We discretize
equations (11) and (12) by dividing the interval [0, L] in x-
direction into I subintervals such that I∆x = L, the interval
[0,M ] in y-direction into J subintervals such that J∆y = M
and the interval [0, T ] in time into N subintervals such that
N∆t = T . We can then approximate U(x, y, t) by Un

i,j and
V (x, y, t) by V n

i,j , value of the difference approximation of
U(x, y, t) and V (x, y, t) at point x = i∆x, y = j∆y and
x = n∆t where 0 ≤ i ≤ I , 0 ≤ j ≤ J and 0 ≤ n ≤ N
which i, j and n are positive integers.

Taking the forward difference scheme in space in each
terms of equations (11) and (12), then

Un
i,j = −K

(
Hn

i+1,j
−Hn

i,j

∆x

)
, (33)
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V n
i,j = −K

(
Hn

i,j+1
−Hn

i,j

∆y

)
. (34)

Taking the backward difference scheme in space in each
terms ofequations(11) and (12), then

Un
i,j = −K

(
Hn

i,j
−Hn

i−1,j

∆x

)
, (35)

V n
i,j = −K

(
Hn

i,j
−Hn

i,j−1

∆y

)
. (36)

C. Finite Difference Method for the Dispersion Model

We will propose the forward time central space method
(FTCS) to the transient groundwater model. We discretize
equation (13) by dividing the interval [0, L] in x-direction
into I subintervals such that I∆x = L, the interval [0,M ] in
y-direction into J subintervals such that J∆y = M and the
interval [0, T ] in time into N subintervals such that N∆t =
T . We can then approximate C(x, y, t) by Cn

i,j , value of the
difference approximation of C(x, y, t) at point x = i∆x,
y = j∆y and x = n∆t where 0 ≤ i ≤ I , 0 ≤ j ≤ J and
0 ≤ n ≤ N which i, j and n are positive integers.

Taking the central difference scheme in space and forward
difference scheme in time into each terms of equation (13),
then

∂2C

∂x2
=

Cn
i+1,j

− 2Cn
i,j

+ Cn
i−1,j

(∆x)
2 , (37)

∂2C

∂y2
=

Cn
i,j+1

− 2Cn
i,j

+ Cn
i,j−1

(∆y)
2 , (38)

∂C

∂x
=

Cn
i+1,j

− Cn
i−1,j

2∆x
, (39)

∂C

∂y
=

Cn
i,j+1

− Cn
i,j−1

2∆y
, (40)

∂C

∂t
=

Cn+1
i,j

− Cn
i,j

∆t
. (41)

Substituting equations (37) – (38) into equation (10), for
1 < i < I − 1 and 1 < j < J − 1 at t > 0,

Cn+1
i,j

= (a1 − a3)C
n
i+1,j

+(1− 2a1 − 2a2)C
n
i,j

+(a1 + a3)C
n
i−1,j

+(a2 − a4)C
n
i,j+1

+(a2 + a4)C
n
i,j−1

,

(42)

where a1 = Dx∆t
(∆x)2

, a2 =
Dy∆t

(∆y)2
, a3 =

Ui,j∆t
2∆x , a4 =

Vi,j∆t
2∆y

and a5 = v∆t.
For i = 1 and j = 1 at t > 0, substituting the known

value on the west boundary by Cn
0,1 = C1, substituting the

unknown value on the south boundary by forward difference
approximation Cn

1,0 = Cn
1,1 − (∆y)CS ,

Cn+1
1,1

= (a1 − a3)C
n
2,1

+(a1 + a3)C1

+(a2 − a4)C
n
1,2

+(1− 2a1 − a2 + a4 − a5)C
n
1,1

− (a2 + a4) (∆y)HS .

(43)

For 1 < i < I − 1 and j = 1 at t > 0, substituting the
unknown value on the south boundary by forward difference
approximation Cn

i,0 = Cn
i,1 − (∆y)CS ,

Cn+1
i,1

= (a1 − a3)C
n
i+1,1

+(a1 + a3)C
n
i−1,1

+(a2 − a4)C
n
i,2

+(1− 2a1 − a2 + a4 − a5)C
n
i,1

− (a2 + a4) (∆y)BS .

(44)

For i = I − 1 and j = J − 1 at t > 0, substituting the
unknown value on the east boundary by backward difference
approximation Cn

I,1 = Cn
I−1,1+(∆x)CE and substituting the

unknown value on the south boundary by forward difference
Cn

I−1,0 = Cn
I−1,1 − (∆y)CS ,

Cn+1
I−1,1

= (a1 + a3)C
n
I−2,1

+(a2 − a4)C
n
I−1,2

+(1− a1 − a2 − a3 + a4 − a5)C
n
I−1,1

+(a1 − a3) (∆x)HE

− (a2 + a4) (∆y)HS .

(45)

For i = 1 and 1 < j < J − 1 at t > 0, substituting the
known value on the west boundary by Cn

0,j = C1,

Cn+1
1,j

= (a1 − a3)C
n
2,j

+(a1 + a3)C1

+(a2 − a4)C
n
1,j+1

+(a2 + a4)C
n
1,j−1

+(1− 2a1 − 2a2 − a5)C
n
1j
.

(46)

For i = I−1 and 1 < j < J−1 at t > 0 , substituting the
unknown value on the east boundary by backward difference
approximation Cn

I,j = Cn
I−1,j + (∆x)CE ,

Cn+1
I−1,j

= (a1 + a3)C
n
I−2,j

+(a2 − a4)C
n
I−1,j+1

+(a2 + a4)C
n
I−1,j−1

+(1− a1 − 2a2 − a3 − a5)C
n
I−1,j

+(a1 − a3) (∆x)HE .

(47)

For i = 1 and j = J − 1 at t > 0, substituting the
known value on the west boundary by Cn

0,J−1 = C1 and
substituting the unknown value on the north boundary by
backward difference Cn

1,J = Cn
1,J−1 + (∆y)CN ,

Cn+1
1,J−1

= (a1 − a3)C
n
2,J−1

+(a1 + a3)C1

+(a2 + a4)C
n
1,J−2

+(1− 2a1 − a2 − a4 − a5)C
n
1,J−1

+(a2 − a4) (∆y)HN .

(48)

For 1 < i < I − 1 and j = J − 1 at t > 0, substituting
the unknown value on the north boundary by backward
difference approximation Cn

i,J = Cn
i,J−1 + (∆y)CN ,

Cn+1
i,J−1

= (a1 − a3)C
n
i+1,J−1

+(a1 + a3)C
n
i−1,J−1

+(a2 + a4)C
n
i,J−2

+(1− 2a1 − a2 − a4 − a5)C
n
i,J−1

+(a2 − a4) (∆y)HN .

(49)

For i = I − 1 and j = J − 1 at t > 0, substituting the
unknown value on the east boundary by backward difference
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approximation Cn
I,J−1 = Cn

I−1,J−1+(∆x)CE and substitut-
ing the unknown value on the north boundary by backward
difference approximation Cn

I−1,J = Cn
I−1,J−1 + (∆y)CN ,

Cn+1
I−1,J−1

= (a1 + a3)C
n
I−2,J−1

+(a2 + a4)C
n
I−1,J−2

+(1− a1 − a2 − a3 − a4 − a5)C
n
I−1,J−1

+(a1 − a3) (∆x)HE

+(a2 − a4) (∆y)HN .

(50)

IV. NUMERICAL EXPERIMENT

The groundwater flow models provide hydraulic head. The
computed hydraulic head is transformed to be groundwater
flow velocity by using the flow velocity model. The results
from the flow velocity model will input the dispersion model
that provide groundwater pollutant concentration. We assume
the experimented vertically area around waste landfill has
dimension that 2.4 km × 2.4 km. The experimented area has
homogeneous aquifer parameters, the hydraulic conductivity
K = 15 m/day , storage capacity S = 1 m−1, diffusion
coefficients Dx = Dy = 0.2 m2/day, grid spacing ∆x =
∆y = 100 m and time step ∆t = 0.1 day.

A. Simulation 1 : Low Level of Difference Hydraulic Head

The initial and boundary conditions of groundwater flow
model are specified Eqs.(3) - (8) where HZ = 25, H0 = 15,
HN = 0, HS = 0 and HE = 0. The initial and boundary
conditions of dispersion model are specified Eqs.(14) - (19)
where CZ = 1, C0 = 0, CN = 0, CS = 0 and CE = 0.
There is no injection wells. The finite difference method are
used to approximate solution of three models, the results of
hydraulic head, velocity flow and groundwater pollutant are
shown in Table I - III, respectively. And the line graphs of
hydraulic head, velocity in x - direction and groundwater
pollutant concentration are shown Figure 1 - 3, respectively.

TABLE I
HYDRAULIC HEAD AT t = 3600 DAY OF SIMULATION 1

y/x 400 800 1200 1600 2000 2400
0 22.0026 19.4154 17.4907 16.2680 15.6407 15.4825

400 22.0026 19.4154 17.4907 16.2680 15.6407 15.4825
800 22.0026 19.4154 17.4907 16.2680 15.6407 15.4825
1200 22.0026 19.4154 17.4907 16.2680 15.6407 15.4825
1600 22.0026 19.4154 17.4907 16.2680 15.6407 15.4825
2000 22.0026 19.4154 17.4907 16.2680 15.6407 15.4825
2400 22.0026 19.4154 17.4907 16.2680 15.6407 15.4825

TABLE II
VELOCITY FLOW IN X-DIRECTION AT t = 3600 DAY OF SIMULATION 1

y/x 400 800 1200 1600 2000 2400
0 0.1088 0.0886 0.0620 0.0367 0.0163 0.0039

400 0.1088 0.0886 0.0620 0.0367 0.0163 0.0039
800 0.1088 0.0886 0.0620 0.0367 0.0163 0.0039

1200 0.1088 0.0886 0.0620 0.0367 0.0163 0.0039
1600 0.1088 0.0886 0.0620 0.0367 0.0163 0.0039
2000 0.1088 0.0886 0.0620 0.0367 0.0163 0.0039
2400 0.1088 0.0886 0.0620 0.0367 0.0163 0.0039

TABLE III
GROUND POLLUTANT CONCENTRATION AT t = 3600 DAY OF

SIMULATION 1

y/x 400 800 1200 1600 2000 2400
0 1.0148 1.0153 1.0000 1.1143 0.0826 0.0003

400 1.0148 1.0153 1.0000 1.1143 0.0826 0.0003
800 1.0148 1.0153 1.0000 1.1143 0.0826 0.0003

1200 1.0148 1.0153 1.0000 1.1143 0.0826 0.0826
1600 1.0148 1.0153 1.0000 1.1143 0.0826 0.0826
2000 1.0148 1.0153 1.0000 1.1143 0.0826 0.0826
2400 1.0148 1.0153 1.0000 1.1143 0.0826 0.0826

Fig. 1. The line graph of hydraulic head of simulation 1 at t = 3600 day
and y = 1200 m

Fig. 2. The line graph of velocity in x - direction of simulation 1 at
t = 3600 day and y = 1200 m

Fig. 3. The line graph of groundwater pollutant concentration of simulation
1 at t = 3600 day and y = 1200 m

B. Simulation 2 : High Level of Difference Hydraulic Head

The initial and boundary conditions of groundwater flow
model are specified Eqs.(3) - (8) where HZ = 25, H0 = 10,
HN = 0, HS = 0 and HE = 0. The initial and boundary
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conditions of dispersion model are specified Eqs.(14) - (19)
where CZ = 1, C0 = 0, CN = 0, CS = 0 and CE = 0.
There is no injection wells. The finite difference method are
used to approximate solution of three models, the results of
hydraulic head, velocity flow and groundwater pollutant are
shown in Table IV - VI, respectively. And the line graph of
groundwater pollutant concentration is shown Figure 4.

TABLE IV
HYDRAULIC HEAD AT t = 3600 DAY OF SIMULATION 2

y/x 400 800 1200 1600 2000 2400
0 20.5039 16.6231 13.7361 11.9019 10.9611 10.7237

400 20.5039 16.6231 13.7361 11.9019 10.9611 10.7237
800 20.5039 16.6231 13.7361 11.9019 10.9611 10.7237
1200 20.5039 16.6231 13.7361 11.9019 10.9611 10.7237
1600 20.5039 16.6231 13.7361 11.9019 10.9611 10.7237
2000 20.5039 16.6231 13.7361 11.9019 10.9611 10.7237
2400 20.5039 16.6231 13.7361 11.9019 10.9611 10.7237

TABLE V
VELOCITY FLOW IN X-DIRECTION AT t = 3600 DAY OF SIMULATION 2

y/x 400 800 1200 1600 2000 2400
0 0.1725 0.1632 0.1329 0.0930 0.0245 0.0058

400 0.1725 0.1632 0.1329 0.0930 0.0245 0.0058
800 0.1725 0.1632 0.1329 0.0930 0.0245 0.0058

1200 0.1725 0.1632 0.1329 0.0930 0.0245 0.0058
1600 0.1725 0.1632 0.1329 0.0930 0.0245 0.0058
2000 0.1725 0.1632 0.1329 0.0930 0.0245 0.0058
2400 0.1725 0.1632 0.1329 0.0930 0.0245 0.0058

TABLE VI
GROUND POLLUTANT CONCENTRATION AT t = 3600 DAY OF

SIMULATION 2

y/x 400 800 1200 1600 2000 2400
0 0.9409 1.0170 1.0162 0.9405 0.4822 0.0056

400 0.9409 1.0170 1.0162 0.9405 0.4822 0.0056
800 0.9409 1.0170 1.0162 0.9405 0.4822 0.0056

1200 0.9409 1.0170 1.0162 0.9405 0.4822 0.0056
1600 0.9409 1.0170 1.0162 0.9405 0.4822 0.0056
2000 0.9409 1.0170 1.0162 0.9405 0.4822 0.0056
2400 0.9409 1.0170 1.0162 0.9405 0.4822 0.0056

Fig. 4. The line graph of groundwater pollutant concentration of simulation
2 at t = 3600 day and y = 1200 m

C. Simulation 3 : High Level of Difference Hydraulic Head
with Five Injection Wells

The initial and boundary conditions of groundwater flow
model are specified Eqs.(3) - (8) where HZ = 25, H0 =

10, HN = 0, HS = 0 and HE = 0. The initial
and boundary conditions of dispersion model are specified
Eqs.(14) - (19) where CZ = 1, C0 = 0, CN = 0,
CS = 0 and CE = 0. There is five injection wells
where Q(800, 400) = Q(800, 800) = Q(800, 1200) =
Q(8000, 1600) = Q(800, 2000) = −105 m3/day. The
finite difference method are used to approximate solution of
three models, the results of hydraulic head, velocity flow
and groundwater pollutant are shown in Table VII - IX,
respectively. And the line graph of groundwater pollutant
concentration is shown Figure 5.

TABLE VII
HYDRAULIC HEAD AT t = 3600 DAY OF SIMULATION 3

y/x 400 800 1200 1600 2000 2400
0 20.3233 16.3162 13.4886 11.7465 10.8647 10.6437

400 20.3094 16.1304 13.4737 11.7431 10.8636 10.6430
800 20.2929 16.0973 13.4551 11.7362 10.8609 10.6412
1200 20.2876 16.0887 13.4487 11.7331 10.8596 10.6402
1600 20.2929 16.0973 13.4551 11.7362 10.8609 10.6412
2000 20.3094 16.1304 13.4737 11.7431 10.8636 10.6430
2400 20.3233 16.3162 13.4886 11.7465 10.8647 10.6437

TABLE VIII
VELOCITY FLOW IN X-DIRECTION AT t = 3600 DAY OF SIMULATION 3

y/x 400 800 1200 1600 2000 2400
0 0.1698 0.1355 0.0895 0.0519 0.0228 0.0054

400 0.1706 0.1511 0.0881 0.0517 0.0228 0.0054
800 0.1713 0.1514 0.0874 0.0514 0.0227 0.0054

1200 0.1715 0.1515 0.0873 0.0513 0.0226 0.0054
1600 0.1713 0.1514 0.0874 0.0514 0.0227 0.0054
2000 0.1706 0.1511 0.0881 0.0517 0.0228 0.0054
2400 0.1698 0.1355 0.0895 0.0519 0.0228 0.0054

TABLE IX
GROUND POLLUTANT CONCENTRATION AT t = 3600 DAY OF

SIMULATION 3

y/x 400 800 1200 1600 2000 2400
0 0.9691 1.0059 0.9952 0.9331 0.3656 0.0033

400 0.9825 1.0047 0.9845 0.9334 0.3519 0.0030
800 0.9917 1.0068 0.9797 0.9347 0.3391 0.0028

1200 0.9941 1.0076 0.9787 0.9354 0.3352 0.0028
1600 0.9920 1.0068 0.9796 0.9347 0.3391 0.0028
2000 0.9831 1.0040 0.9841 0.9333 0.3519 0.0030
2400 0.9690 1.0059 0.9956 0.9330 0.3659 0.0033

Fig. 5. The line graph of groundwater pollutant concentration of simulation
3 at t = 3600 day and y = 1200 m
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D. Simulation 4 : High Level of Difference Hydraulic Head
with Fifteen Injection Wells

The initial and boundary conditions of groundwater flow
model are specified Eqs.(3) - (8) where HZ = 25, H0 =
10, HN = 0, HS = 0 and HE = 0. The initial
and boundary conditions of dispersion model are specified
Eqs.(14) - (19) where CZ = 1, C0 = 0, CN = 0,
CS = 0 and CE = 0. There is five injection wells
where Q(800, 400) = Q(800, 800) = Q(800, 1200) =
Q(8000, 1600) = Q(800, 2000) = Q(1200, 400) =
Q(1200, 800) = Q(1200, 1200) = Q(12000, 1600) =
Q(1200, 2000) = Q(1600, 400) = Q(1600, 800) =
Q(1600, 1200) = Q(16000, 1600) = Q(1600, 2000) =
−105 m3/day. The finite difference method are used to
approximate solution of three models, the results of hydraulic
head, velocity flow and groundwater pollutant are shown in
Table X - XII, respectively. And the line graph of ground-
water pollutant concentration is shown Figure 6.

TABLE X
HYDRAULIC HEAD AT t = 3600 DAY OF SIMULATION 4

y/x 400 800 1200 1600 2000 2400
0 20.0922 15.8057 12.6911 10.8856 10.1626 10.0094

400 20.0725 15.5890 12.4108 10.5782 10.1321 9.9937
800 20.0443 15.5196 12.3169 10.4914 10.0862 9.9615
1200 20.0339 15.4977 12.2879 10.4646 10.0685 0.9472
1600 20.0443 15.5196 12.3169 10.4914 10.0862 9.9615
2000 20.0725 15.5890 12.4108 10.5782 10.1321 9.9937
2400 20.0922 15.8057 12.6911 10.8856 10.1626 10.0094

TABLE XI
VELOCITY FLOW IN X-DIRECTION t = 3600 DAY OF SIMULATION 4

y/x 400 800 1200 1600 2000 2400
0 0.1789 0.1468 0.0985 0.0506 0.0167 0.0037

400 0.1800 0.1642 0.1186 0.0725 0.0144 0.0034
800 0.1813 0.1657 0.1193 0.0719 0.0130 0.0030

1200 0.1817 0.1662 0.1195 0.0718 0.0127 0.0029
1600 0.1813 0.1657 0.1193 0.0719 0.0130 0.0030
2000 0.1800 0.1642 0.1186 0.0725 0.0144 0.0034
2400 0.1789 0.1468 0.0985 0.0506 0.0167 0.0037

TABLE XII
GROUND POLLUTANT CONCENTRATION AT t = 3600 DAY OF

SIMULATION 4

y/x 400 800 1200 1600 2000 2400
0 0.9977 0.9861 1.0596 0.9282 0.1951 0.0008

400 1.0179 1.0172 1.1214 1.0233 0.0897 0.0003
800 1.0254 1.0221 1.1402 1.0570 0.0645 0.0002

1200 1.0262 1.0227 1.1451 1.0703 0.0596 0.0001
1600 1.0263 1.0235 1.1441 1.0667 0.0639 0.0002
2000 1.0213 1.0217 1.1329 1.0421 0.0880 0.0003
2000 0.9966 0.9855 1.0586 0.9297 0.1963 0.0008

Fig. 6. The line graph of groundwater pollutant concentration of simulation
4 at t = 3600 day and y = 1200 m

E. Simulation 5 : High Level of Difference Hydraulic Head
with Five Injection Wells and Ascending Hydraulic Conduc-
tivity

The initial and boundary conditions of groundwater flow
model are specified Eqs.(3) - (8) where HZ = 25, H0 =
10, HN = 0, HS = 0 and HE = 0. The initial
and boundary conditions of dispersion model are specified
Eqs.(14) - (19) where CZ = 1, C0 = 0, CN = 0,
CS = 0 and CE = 0. There is five injection wells
where Q(800, 400) = Q(800, 800) = Q(800, 1200) =
Q(8000, 1600) = Q(800, 2000) = −105 m3/day. The
ascending hydraulic conductivity is given each area in Table
XIII. The finite difference method are used to approximate
solution of three models, the results of hydraulic head,
velocity flow and groundwater pollutant are shown in Table
XIV - XVI, respectively. And the line graph of groundwater
pollutant concentration is shown Figure 7.

TABLE XIII
HYDRAULIC CONDUCTIVITY OF SIMULATION 5

y/x 400 800 1200 1600 2000 2400
0 10 13 15 30 40 40

400 10 14 15 30 40 40
800 10 13 15 30 40 40

1200 10 14 15 30 40 40
1600 10 13 15 30 40 40
2000 10 14 15 30 40 40
2400 11 13 15 30 40 40

TABLE XIV
HYDRAULIC HEAD AT t = 3600 DAY OF SIMULATION 5

y/x 400 800 1200 1600 2000 2400
0 19.9454 15.8959 13.3319 12.0446 11.4591 11.3073

400 19.9253 15.6879 13.3137 12.0400 11.4502 11.3061
800 19.8993 15.6258 13.2879 12.0301 11.4460 11.3031
1200 19.8883 15.6307 13.2783 12.0247 11.4432 11.3009
1600 19.8876 15.6156 13.2820 12.0267 11.4437 11.3011
2000 19.9183 15.6723 13.3037 12.0342 11.4463 11.3028
2400 19.9411 15.8799 13.3215 12.0381 11.4475 11.3035
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TABLE XV
VELOCITY FLOW IN X-DIRECTION AT t = 3600 DAY OF SIMULATION 5

y/x 400 800 1200 1600 2000 2400
0 0.1319 0.1239 0.0763 0.0709 0.0389 0.0096

400 0.1205 0.1400 0.0748 0.0704 0.0387 0.0096
800 0.1212 0.1314 0.0738 0.0696 0.0384 0.0095

1200 0.1213 0.1403 0.0737 0.0693 0.0382 0.0095
1600 0.1214 0.1314 0.0736 0.0694 0.0383 0.0095
2000 0.1329 0.1400 0.0745 0.0701 0.0386 0.0095
2400 0.1322 0.1151 0.0761 0.0706 0.0387 0.0095

TABLE XVI
GROUND POLLUTANT CONCENTRATION AT t = 3600 DAY OF

SIMULATION 5

y/x 400 800 1200 1600 2000 2400
0 0.9995 1.0138 1.0331 0.9514 0.7021 0.0166

400 0.9913 1.0184 1.0200 0.9518 0.6630 0.0148
800 0.9801 1.0166 1.0114 0.9475 0.6208 0.0129

1200 0.9792 1.0099 1.0100 0.9466 0.6089 0.0124
1600 0.9703 0.9827 0.9988 0.9466 0.6105 0.0125
2000 0.9797 1.0127 1.0177 0.9500 0.6512 0.0143
2400 1.0060 1.0171 1.0367 0.9491 0.6936 0.0162

Fig. 7. The line graph of groundwater pollutant concentration of simulation
5 at t = 3600 day and y = 1200 m

F. Simulation 6 : High Level of Difference Hydraulic Head
with Five Injection Wells and Descending Hydraulic conduc-
tivity

The initial and boundary conditions of groundwater flow
model are specified Eqs.(3) - (8) where HZ = 25, H0 =
10, HN = 0, HS = 0 and HE = 0. The initial
and boundary conditions of dispersion model are specified
Eqs.(14) - (19) where CZ = 1, C0 = 0, CN = 0,
CS = 0 and CE = 0. There is five injection wells
where Q(800, 400) = Q(800, 800) = Q(800, 1200) =
Q(8000, 1600) = Q(800, 2000) = −105 m3/day. The
descending hydraulic conductivity is given each area in Table
XVII. The finite difference method are used to approximate
solution of three models, the results of hydraulic head,
velocity flow and groundwater pollutant are shown in Table
XVIII - XX, respectively. And the line graph of groundwater
pollutant concentration is shown Figure 8.

TABLE XVII
HYDRAULIC CONDUCTIVITY OF SIMULATION 6

y/x 400 800 1200 1600 2000 2400
0 40 30 15 13 10 10

400 40 30 15 14 10 10
800 40 30 15 13 10 10

1200 40 30 15 14 10 10
1600 40 30 15 13 10 10
2000 40 30 15 14 11 11
2400 40 30 15 13 10 10

TABLE XVIII
HYDRAULIC HEAD AT t = 3600 DAY OF SIMULATION 6

y/x 400 800 1200 1600 2000 2400
0 21.2287 17.6561 14.6074 12.4399 11.1912 10.8511

400 21.2225 17.5707 14.5993 12.4371 11.1815 10.8390
800 21.2152 17.5559 14.5904 12.4304 11.1757 10.8328
1200 21.2127 17.5518 14.5870 12.4301 11.1699 10.8243
1600 21.2147 17.5547 14.5879 12.4249 11.1653 10.8205
2000 21.2217 17.5687 14.5951 12.4293 11.1789 10.8391
2400 21.2278 17.6535 14.6018 12.4311 11.1870 10.8501

TABLE XIX
VELOCITY FLOW IN X-DIRECTION AT t = 3600 DAY OF SIMULATION 6

y/x 400 800 1200 1600 2000 2400
0 0.3736 0.2575 0.1027 0.0636 0.0257 0.0062

400 0.3766 0.2719 0.1021 0.0635 0.0236 0.0056
800 0.3754 0.2721 0.1018 0.0589 0.0235 0.0056

1200 0.3757 0.2722 0.1017 0.0634 0.0238 0.0057
1600 0.3755 0.2722 0.1019 0.0590 0.0237 0.0057
2000 0.3747 0.2720 0.1022 0.0636 0.0256 0.0061
2400 0.3737 0.2576 0.1028 0.0591 0.0253 0.0061

TABLE XX
GROUND POLLUTANT CONCENTRATION AT t = 3600 DAY OF

SIMULATION 6

y/x 400 800 1200 1600 2000 2400
0 0.9881 0.9722 0.9812 0.9997 1.0304 0.0435

400 0.9867 0.9637 0.9836 0.9995 1.0105 0.0396
800 0.9899 0.9613 0.9828 1.0081 0.9965 0.0383

1200 0.9909 0.9599 0.9855 0.9989 1.0124 0.0392
1600 0.9902 0.9616 0.9821 1.0083 0.9871 0.0358
2000 0.9865 0.9631 0.9826 1.0033 1.0190 0.0415
2400 0.9889 0.9735 0.9779 1.0099 1.0068 0.0414

Fig. 8. The line graph of groundwater pollutant concentration of simulation
6 at t = 3600 day and y = 1200 m

G. Simulation 7 : Comparison Six Simulations
The all parameter of simulation 1 - 6 are shown in Table

XXI. The comparison velocity flow in x-direction between

Engineering Letters, 30:3, EL_30_3_11

Volume 30, Issue 3: September 2022

 
______________________________________________________________________________________ 



simulation 1 and 2 is shown in Figure 9. The comparison
velocity flow in x-direction among simulation 2,3 and 4 is
shown in Figure 10. The comparison velocity flow in x-
direction between each derivative HE is shown in Figure 11.
The line graphs of velocity flow in x-direction of simulation
5 and 6 are shown in Figure 12 and 14, respectively. And
the line graphs of hydraulic conductivity of simulation 5 and
6 are shown in Figure 13 and 15, respectively.

TABLE XXI
THE BOUNDARY CONDITIONS AND PUMPING WELLS OF SIMULATION 1 -

6

Simulation HZ H0 HN HS HE

1 25 15 0 0 0
2 25 10 0 0 0
3 25 10 0 0 0
4 25 10 0 0 0
5 25 10 0 0 0
6 25 10 0 0 0

Simulation CZ C0 CN CS CE

1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 1 0 0 0 0
5 1 0 0 0 0
6 1 0 0 0 0

Simulation Q1 Q2 Q3 Q4 Q5

1 0 0 0 0 0
2 0 0 0 0 0
3 -105 -105 -105 -105 -105
4 -105 -105 -105 -105 -105
5 -105 -105 -105 -105 -105
6 -105 -105 -105 -105 -105

Simultaion Q6 Q7 Q8 Q9 Q10

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 -105 -105 -105 -105 -105
5 0 0 0 0 0
6 0 0 0 0 0

Simulation Q11 Q12 Q13 Q14 Q15

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 -105 -105 -105 -105 -105
5 0 0 0 0 0
6 0 0 0 0 0

From the Table XXI, given Q1 = Q(800, 400), Q2 =
Q(800, 800), Q3 = Q(800, 1200), Q4 = Q(800, 1600),
Q5 = Q(800, 2000), Q6 = Q(1200, 400), Q7 =
Q(1200, 800), Q8 = Q(1200, 1200), Q9 = Q(1200, 1600),
Q10 = Q(1200, 2000), Q11 = Q(1600, 400), Q12 =
Q(1600, 800), Q13 = Q(1600, 1200), Q14 = Q(1600, 1600)
and Q15 = Q(1600, 2000).

Fig. 9. Comparison flow velocity in x - direction of simulation 1 and 2 at
t = 3600 day and y = 1200 m

Fig. 10. Comparison flow velocity in x - direction of simulation 2, 3 and
4 at t = 3600 day and y = 1200 m

Fig. 11. Comparison flow velocity in x direction between different of
derivative values HE at t = 3600 day and y = 1200 m

Fig. 12. The line graph of velocity in x - direction of simulation 5 at
t = 3600 day and y = 1200 m
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Fig. 13. The line graph of hydraulic conductivity of simulation 5 at t =
3600 day and y = 1200 m

Fig. 14. The line graph of velocity in x - direction of simulation 6 at
t = 3600 day and y = 1200 m

Fig. 15. The line graph of hydraulic conductivity of simulation 6 at t =
3600 day and y = 1200 m

V. DISCUSSION

In simulation 1, we consider low level of difference
hydraulic head. The results of hydraulic head, velocity flow
and groundwater pollutant concentration are shown in Table I
- III, respectively. The line graphs of hydraulic head, velocity
in x - direction and groundwater pollutant concentration are
shown Figure 1 - 3, respectively.

In simulation 2, we consider high level of difference
hydraulic head. The result of hydraulic head, velocity flow
and groundwater pollutant concentration are shown in Table
IV - VI, respectively. The line graph of groundwater pollutant
concentration is shown Figure 4.

In simulation 3, we consider low level of difference hy-
draulic head with five injection wells. The result of hydraulic
head, velocity flow and groundwater pollutant concentration
are shown in Table VII - IX, respectively. The line graph of
groundwater pollutant concentration is shown Figure 5.

In simulation 4, we consider low level of difference
hydraulic head with fifteen injection wells. The result of
hydraulic head, velocity flow and groundwater pollutant
concentration are shown in Table X - XII, respectively. The
line graph of groundwater pollutant concentration is shown
Figure 6.

In simulation 5, we consider low level of difference hy-
draulic head with five injection wells and ascending hydraulic
conductivity. The result of hydraulic head, velocity flow and
groundwater pollutant concentration are shown in Table XIV
- XVI, respectively. The line graph of groundwater pollutant
concentration is shown Figure 7.

In simulation 6, we consider low level of difference
hydraulic head with five injection wells and descending
hydraulic conductivity. The result of hydraulic head, velocity
flow and groundwater pollutant concentration are shown in
Table XVIII - XX, respectively.the line graph of groundwater
pollutant concentration is shown Figure 8.

From simulations 1 - 6, the hydraulic head drives ground-
water flow from the higher hydraulic head zone to the
lower zone. Each area position near landfill has a higher
velocity flow than faraway positions, and each area position
at high velocity flow has a higher groundwater pollutant
concentration than low velocity flow.

We take the velocity flow into consideration in each simu-
lation in Simulation 7. Figure 9 demonstrates the x - direction
comparison velocity flow between simulations 1 and 2. We
will have a higher hydraulic head difference as well as a high
velocity. Figure 10 demonstrates the x-direction comparative
velocity flow between simulations 2, 3, and 4. Flow velocity
is affected by the pumping of water from injection wells.
There is minimal velocity in the faraway location as well.
Figure 11 illustrates the x-direction comparative velocity
flow for each derivative HE . When the far area has a lower
hydraulic head level, we will raise the velocity. Figure 12 - 15
illustrate the x-direction comparative velocity flow between
simulations 5 and 6. When a region has a high hydraulic
conductivity, the velocity of flow increases, and when the
area has a low hydraulic conductivity, the velocity of flow
decreases.

For all simulation, the building of landfills should be built
in the area low level of difference hydraulic head. Moreover,
the pumping wells around landfill can be decrease ground-
water pollutant concentration before residential area. The
resulted in improved water quality in the faraway area with
little influence on groundwater volume and flow velocity.

VI. CONCLUSION

The hydraulic head drives groundwater flow from the
higher hydraulic head zone to the lower hydraulic head
zone in simulations 1-6. Each area position near a landfill
has a higher velocity flow than those further away, and
each area position with a high velocity flow has a higher
groundwater pollutant concentration than those with a low
velocity flow. The velocity flow is increased when the area
has high hydraulic conductivity, and the velocity flow is
decreased when the area has low hydraulic conductivity.

In all scenarios, landfill construction should be done in an
area with a low hydraulic head. Furthermore, pumping wells
near landfills might reduce the concentration of pollutants
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in groundwater in residential areas. As a result, the calcu-
lated water quality in the faraway area was improved while
groundwater volume and flow velocity were preserved.
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